Maze Protocol
Homepage
Twitter
Medium
Github
Search…
Introduction
FAQ
The Principle of Maze
The Financial Structure
The Application
User Guidelines
Loan Policy
Risks
Experimental Network
Neko Network
NEKO Token Contract
Token Contract Address
Initial SHR Offering
Nekonomics
Mini Roadmap
Data API
The Core Protocol
Overview
Mining Computation Model
Presets
Parameters
Variables
Process
MP Functions
Price Feed
Mazenomics
Circulation
Harvest Restriction
Governance
Reserve As Governance
Service Membership
Money Markets
Farm
Fee
Test Program
Testnet - Leo
Testnet - Gemini
Testnet - Taurus
Testnet - Aries
Resources
Glossary
Links
Audit
Transparency
Powered By
GitBook
Process
Phase 1 Values
Variable
Definition
V_maze
Value of MAZE supplied in USP
V_stable(i)
Value of one type of stablecoin supplied
V_stable
Value of stablecoins supplied in USP
V_usp
Value of assets supplied in USP
V_instable(i)
Value of one type of instablecoin supplied
V_instable
Value of assets supplied in ISP
V
m
a
z
e
=
(
N
r
m
a
z
e
+
N
f
m
a
z
e
)
∗
C
m
a
z
e
V
s
t
a
b
l
e
(
i
)
=
(
N
r
s
t
a
b
l
e
(
i
)
+
N
f
s
t
a
b
l
e
(
i
)
)
∗
C
s
t
a
b
l
e
(
i
)
V
s
t
a
b
l
e
=
∑
i
=
1
n
V
s
t
a
b
l
e
(
i
)
V
u
s
p
=
V
m
a
z
e
+
V
s
t
a
b
l
e
V
i
n
s
t
a
b
l
e
(
i
)
=
(
N
r
s
t
a
b
l
e
(
i
)
+
N
f
s
t
a
b
l
e
(
i
)
)
∗
C
i
n
s
t
a
b
l
e
(
i
)
V
i
s
p
=
∑
i
=
1
n
V
i
n
s
t
a
b
l
e
(
i
)
V_{maze}=(N_{rmaze}+N_{fmaze})*C_{maze} \\ V_{stable(i)}=(N_{rstable(i)}+N_{fstable(i)})*C_{stable(i)} \\ V_{stable}=\sum_{i=1}^{n} V_{stable(i)} \\ V_{usp}=V_{maze}+V_{stable} \\ V_{instable(i)}=(N_{rstable(i)}+N_{fstable(i)})*C_{instable(i)} \\ V_{isp}=\sum_{i=1}^{n} V_{instable(i)}
V
ma
ze
=
(
N
r
ma
ze
+
N
f
ma
ze
)
∗
C
ma
ze
V
s
t
ab
l
e
(
i
)
=
(
N
rs
t
ab
l
e
(
i
)
+
N
f
s
t
ab
l
e
(
i
)
)
∗
C
s
t
ab
l
e
(
i
)
V
s
t
ab
l
e
=
i
=
1
∑
n
V
s
t
ab
l
e
(
i
)
V
u
s
p
=
V
ma
ze
+
V
s
t
ab
l
e
V
in
s
t
ab
l
e
(
i
)
=
(
N
rs
t
ab
l
e
(
i
)
+
N
f
s
t
ab
l
e
(
i
)
)
∗
C
in
s
t
ab
l
e
(
i
)
V
i
s
p
=
i
=
1
∑
n
V
in
s
t
ab
l
e
(
i
)
Phase 2 Global Yield
Phase 2.1 Global Yield
Variable
Definition
Y_global
The actual amount of MAZE generated per cycle
Y
g
l
o
b
a
l
=
Y
b
a
s
e
l
i
n
e
∗
K
g
l
o
b
a
l
Y_{global}=Y_{baseline}*K_{global}
Y
g
l
o
ba
l
=
Y
ba
se
l
in
e
∗
K
g
l
o
ba
l
Phase 2.2 Global Yield Distribution
Y
u
s
p
=
Y
g
l
o
b
a
l
∗
R
u
s
p
Y
i
s
p
=
Y
g
l
o
b
a
l
∗
R
i
s
p
Y
l
p
p
=
Y
g
l
o
b
a
l
∗
R
l
p
p
Y_{usp}=Y_{global}*R_{usp} \\ Y_{isp}=Y_{global}*R_{isp} \\ Y_{lpp}=Y_{global}*R_{lpp}
Y
u
s
p
=
Y
g
l
o
ba
l
∗
R
u
s
p
Y
i
s
p
=
Y
g
l
o
ba
l
∗
R
i
s
p
Y
lpp
=
Y
g
l
o
ba
l
∗
R
lpp
Phase 3 USP Internal Distribution
Phase 3.1 SVRB Stablecoins-MAZE
Variable
Definition
P_maze
Proportion of MAZE value supplied in USP
R_svrb
SVRB ratio
D_maze
USP reward distributed to MAZE supply
D_stable
USP reward distributed to stablecoin supply
P
m
a
z
e
=
V
m
a
z
e
/
V
u
s
p
R
s
v
r
b
=
0.8
P
m
a
z
e
∈
(
0
,
π
/
12
)
R
s
v
r
b
=
0.3
sin
6
x
+
0.5
P
m
a
z
e
∈
[
π
/
12
,
π
/
4
]
R
s
v
r
b
=
0.2
P
m
a
z
e
∈
(
π
/
4
,
1
)
D
m
a
z
e
=
Y
u
s
p
∗
R
s
v
r
b
D
s
t
a
b
l
e
=
Y
u
s
p
∗
(
1
−
R
s
v
r
b
)
P_{maze}=V_{maze}/V_{usp} \\ R_{svrb}=0.8\qquad P_{maze}\in(0, \pi/12) \\ R_{svrb}=0.3\sin6x+0.5\qquad P_{maze}\in[\pi/12, \pi/4] \\ R_{svrb}=0.2\qquad P_{maze}\in(\pi/4,1) \\ D_{maze}=Y_{usp}*R_{svrb} \\ D_{stable}=Y_{usp}*(1-R_{svrb})
P
ma
ze
=
V
ma
ze
/
V
u
s
p
R
s
v
r
b
=
0.8
P
ma
ze
∈
(
0
,
π
/12
)
R
s
v
r
b
=
0.3
sin
6
x
+
0.5
P
ma
ze
∈
[
π
/12
,
π
/4
]
R
s
v
r
b
=
0.2
P
ma
ze
∈
(
π
/4
,
1
)
D
ma
ze
=
Y
u
s
p
∗
R
s
v
r
b
D
s
t
ab
l
e
=
Y
u
s
p
∗
(
1
−
R
s
v
r
b
)
Phase 3.1.1 FORB MAZE Internal Distribution
Variable
Definition
P_mazeoccupy
Proportion of MAZE lent
R_forbmaze
MAZE FORB ratio
D_mazefunding
Reward distribution to MAZE funding supply
D_mazereserve
Reward distribution to MAZE reserve supply
P
m
a
z
e
o
c
c
u
p
y
=
N
m
a
z
e
o
c
c
u
p
y
/
N
f
m
a
z
e
R
f
o
r
b
m
a
z
e
=
0.5
P
m
a
z
e
o
c
c
u
p
y
∈
[
0
,
0.2
]
R
f
o
r
b
m
a
z
e
=
0.5
∗
P
m
a
z
e
o
c
c
u
p
y
+
0.4
P
m
a
z
e
o
c
c
u
p
y
∈
(
0.2
,
0.8
)
R
f
o
r
b
m
a
z
e
=
0.8
P
m
a
z
e
o
c
c
u
p
y
∈
[
0.8
,
1
]
D
m
a
z
e
f
u
n
d
i
n
g
=
D
m
a
z
e
∗
R
f
o
r
b
m
a
z
e
D
m
a
z
e
r
e
s
e
r
v
e
=
D
m
a
z
e
∗
(
1
−
R
f
o
r
b
m
a
z
e
)
P_{mazeoccupy}=N_{mazeoccupy}/N_{fmaze} \\ R_{forbmaze}=0.5\qquad P_{mazeoccupy}\in[0, 0.2] \\ R_{forbmaze}=0.5*P_{mazeoccupy}+0.4\qquad P_{mazeoccupy}\in(0.2, 0.8) \\ R_{forbmaze}=0.8\qquad P_{mazeoccupy}\in[0.8, 1] \\ D_{mazefunding}=D_{maze}*R_{forbmaze} \\ D_{mazereserve}=D_{maze}*(1-R_{forbmaze})
P
ma
zeocc
u
p
y
=
N
ma
zeocc
u
p
y
/
N
f
ma
ze
R
f
or
bma
ze
=
0.5
P
ma
zeocc
u
p
y
∈
[
0
,
0.2
]
R
f
or
bma
ze
=
0.5
∗
P
ma
zeocc
u
p
y
+
0.4
P
ma
zeocc
u
p
y
∈
(
0.2
,
0.8
)
R
f
or
bma
ze
=
0.8
P
ma
zeocc
u
p
y
∈
[
0.8
,
1
]
D
ma
ze
f
u
n
d
in
g
=
D
ma
ze
∗
R
f
or
bma
ze
D
ma
zereser
v
e
=
D
ma
ze
∗
(
1
−
R
f
or
bma
ze
)
Phase 3.2 SVWD Stablecoins
Variable
Definition
P_stablevalue(i)
Value proportion of one type of stablecoin supply
D_stable(i)
Reward distribution to one type of stablecoin supply
P
s
t
a
b
l
e
v
a
l
u
e
(
i
)
=
V
s
t
a
b
l
e
(
i
)
/
V
s
t
a
b
l
e
D
s
t
a
b
l
e
(
i
)
=
D
s
t
a
b
l
e
∗
P
s
t
a
b
l
e
v
a
l
u
e
(
i
)
P_{stablevalue(i)}=V_{stable(i)}/V_{stable} \\ D_{stable(i)}=D_{stable}*P_{stablevalue(i)}
P
s
t
ab
l
e
v
a
l
u
e
(
i
)
=
V
s
t
ab
l
e
(
i
)
/
V
s
t
ab
l
e
D
s
t
ab
l
e
(
i
)
=
D
s
t
ab
l
e
∗
P
s
t
ab
l
e
v
a
l
u
e
(
i
)
Phase 3.2.1 FORB Stablecoin Internal Distribution
Variable
Definition
P_stableoccupy(i)
Proportion of the stablecoin lent
R_forbstable(i)
The stablecoin FORB ratio
D_stablefunding(i)
Reward distribution to the stablecoin funding supply
D_stablereserve(i)
Reward distribution to the stablecoin reserve supply
P
s
t
a
b
l
e
o
c
c
u
p
y
(
i
)
=
N
s
t
a
b
l
e
o
c
c
u
p
y
(
i
)
/
N
f
s
t
a
b
l
e
(
i
)
R
f
o
r
b
s
t
a
b
l
e
(
i
)
=
0.5
P
s
t
a
b
l
e
o
c
c
u
p
y
(
i
)
∈
[
0
,
0.2
]
R
f
o
r
b
s
t
a
b
l
e
(
i
)
=
0.5
∗
P
s
t
a
b
l
e
o
c
c
u
p
y
(
i
)
+
0.4
P
s
t
a
b
l
e
o
c
c
u
p
y
(
i
)
∈
(
0.2
,
0.8
)
R
f
o
r
b
s
t
a
b
l
e
(
i
)
=
0.8
P
s
t
a
b
l
e
o
c
c
u
p
y
(
i
)
∈
[
0.8
,
1
]
D
s
t
a
b
l
e
f
u
n
d
i
n
g
(
i
)
=
D
s
t
a
b
l
e
(
i
)
∗
R
f
o
r
b
s
t
a
b
l
e
(
i
)
D
s
t
a
b
l
e
r
e
s
e
r
v
e
(
i
)
=
D
s
t
a
b
l
e
(
i
)
∗
(
1
−
R
f
o
r
b
s
t
a
b
l
e
(
i
)
)
P_{stableoccupy(i)}=N_{stableoccupy(i)}/N_{fstable(i)} \\ R_{forbstable(i)}=0.5\qquad P_{stableoccupy(i)}\in[0, 0.2] \\ R_{forbstable(i)}=0.5*P_{stableoccupy(i)}+0.4\qquad P_{stableoccupy(i)}\in(0.2, 0.8) \\ R_{forbstable(i)}=0.8\qquad P_{stableoccupy(i)}\in[0.8, 1] \\ D_{stablefunding(i)}=D_{stable(i)}*R_{forbstable(i)} \\ D_{stablereserve(i)}=D_{stable(i)}*(1-R_{forbstable(i)})
P
s
t
ab
l
eocc
u
p
y
(
i
)
=
N
s
t
ab
l
eocc
u
p
y
(
i
)
/
N
f
s
t
ab
l
e
(
i
)
R
f
or
b
s
t
ab
l
e
(
i
)
=
0.5
P
s
t
ab
l
eocc
u
p
y
(
i
)
∈
[
0
,
0.2
]
R
f
or
b
s
t
ab
l
e
(
i
)
=
0.5
∗
P
s
t
ab
l
eocc
u
p
y
(
i
)
+
0.4
P
s
t
ab
l
eocc
u
p
y
(
i
)
∈
(
0.2
,
0.8
)
R
f
or
b
s
t
ab
l
e
(
i
)
=
0.8
P
s
t
ab
l
eocc
u
p
y
(
i
)
∈
[
0.8
,
1
]
D
s
t
ab
l
e
f
u
n
d
in
g
(
i
)
=
D
s
t
ab
l
e
(
i
)
∗
R
f
or
b
s
t
ab
l
e
(
i
)
D
s
t
ab
l
ereser
v
e
(
i
)
=
D
s
t
ab
l
e
(
i
)
∗
(
1
−
R
f
or
b
s
t
ab
l
e
(
i
)
)
Phase 4 ISP Internal Distribution
Phase 4.1 SVWD Instablecoins
Variable
Definition
P_instablevalue(i)
Value proportion of one type of instablecoin supply
D_instable(i)
Reward distribution to one type of instablecoin supply
P
i
n
s
t
a
b
l
e
v
a
l
u
e
(
i
)
=
V
i
n
s
t
a
b
l
e
(
i
)
/
V
i
s
p
D
i
n
s
t
a
b
l
e
(
i
)
=
Y
i
s
p
∗
P
i
n
s
t
a
b
l
e
v
a
l
u
e
(
i
)
P_{instablevalue(i)}=V_{instable(i)}/V_{isp} \\ D_{instable(i)}=Y_{isp}*P_{instablevalue(i)}
P
in
s
t
ab
l
e
v
a
l
u
e
(
i
)
=
V
in
s
t
ab
l
e
(
i
)
/
V
i
s
p
D
in
s
t
ab
l
e
(
i
)
=
Y
i
s
p
∗
P
in
s
t
ab
l
e
v
a
l
u
e
(
i
)
Phase 4.2 FORB Intablecoin Internal Distribution
Variable
Definition
P_instableoccupy(i)
Proportion of the instablecoin lent
R_forbinstable(i)
The instablecoin FORB ratio
D_instablefunding(i)
Reward distribution to the instablecoin funding supply
D_instablereserve(i)
Reward distribution to the instablecoin reserve supply
P
i
n
s
t
a
b
l
e
o
c
c
u
p
y
(
i
)
=
N
i
n
s
t
a
b
l
e
o
c
c
u
p
y
(
i
)
/
N
f
i
n
s
t
a
b
l
e
(
i
)
R
f
o
r
b
i
n
s
t
a
b
l
e
(
i
)
=
0.5
P
i
n
s
t
a
b
l
e
o
c
c
u
p
y
(
i
)
∈
[
0
,
0.2
]
R
f
o
r
b
i
n
s
t
a
b
l
e
(
i
)
=
0.5
∗
P
i
n
s
t
a
b
l
e
o
c
c
u
p
y
(
i
)
+
0.4
P
i
n
s
t
a
b
l
e
o
c
c
u
p
y
(
i
)
∈
(
0.2
,
0.8
)
R
f
o
r
b
i
n
s
t
a
b
l
e
(
i
)
=
0.8
P
i
n
s
t
a
b
l
e
o
c
c
u
p
y
(
i
)
∈
[
0.8
,
1
]
D
i
n
s
t
a
b
l
e
f
u
n
d
i
n
g
(
i
)
=
D
i
n
s
t
a
b
l
e
(
i
)
∗
R
f
o
r
b
i
n
s
t
a
b
l
e
(
i
)
D
i
n
s
t
a
b
l
e
r
e
s
e
r
v
e
(
i
)
=
D
i
n
s
t
a
b
l
e
(
i
)
∗
(
1
−
R
f
o
r
b
i
n
s
t
a
b
l
e
(
i
)
)
P_{instableoccupy(i)}=N_{instableoccupy(i)}/N_{finstable(i)} \\ R_{forbinstable(i)}=0.5\qquad P_{instableoccupy(i)}\in[0, 0.2] \\ R_{forbinstable(i)}=0.5*P_{instableoccupy(i)}+0.4\qquad P_{instableoccupy(i)}\in(0.2, 0.8) \\ R_{forbinstable(i)}=0.8\qquad P_{instableoccupy(i)}\in[0.8, 1] \\ D_{instablefunding(i)}=D_{instable(i)}*R_{forbinstable(i)} \\ D_{instablereserve(i)}=D_{instable(i)}*(1-R_{forbinstable(i)})
P
in
s
t
ab
l
eocc
u
p
y
(
i
)
=
N
in
s
t
ab
l
eocc
u
p
y
(
i
)
/
N
f
in
s
t
ab
l
e
(
i
)
R
f
or
bin
s
t
ab
l
e
(
i
)
=
0.5
P
in
s
t
ab
l
eocc
u
p
y
(
i
)
∈
[
0
,
0.2
]
R
f
or
bin
s
t
ab
l
e
(
i
)
=
0.5
∗
P
in
s
t
ab
l
eocc
u
p
y
(
i
)
+
0.4
P
in
s
t
ab
l
eocc
u
p
y
(
i
)
∈
(
0.2
,
0.8
)
R
f
or
bin
s
t
ab
l
e
(
i
)
=
0.8
P
in
s
t
ab
l
eocc
u
p
y
(
i
)
∈
[
0.8
,
1
]
D
in
s
t
ab
l
e
f
u
n
d
in
g
(
i
)
=
D
in
s
t
ab
l
e
(
i
)
∗
R
f
or
bin
s
t
ab
l
e
(
i
)
D
in
s
t
ab
l
ereser
v
e
(
i
)
=
D
in
s
t
ab
l
e
(
i
)
∗
(
1
−
R
f
or
bin
s
t
ab
l
e
(
i
)
)
FORB Exception
Considering a token's Funding Pool and Reserve Pool, if one of them is empty, FORB will not work anymore since the yield distribution will be fully taken by the other one with supply inside.
Previous
Variables
Next
MP Functions
Last modified
1yr ago
Copy link
Contents
Phase 1 Values
Phase 2 Global Yield
Phase 2.1 Global Yield
Phase 2.2 Global Yield Distribution
Phase 3 USP Internal Distribution
Phase 3.1 SVRB Stablecoins-MAZE
Phase 3.2 SVWD Stablecoins
Phase 4 ISP Internal Distribution
Phase 4.1 SVWD Instablecoins
Phase 4.2 FORB Intablecoin Internal Distribution
FORB Exception