Process

Phase 1 Values

Variable
Definition
V_maze
Value of MAZE supplied in USP
V_stable(i)
Value of one type of stablecoin supplied
V_stable
Value of stablecoins supplied in USP
V_usp
Value of assets supplied in USP
V_instable(i)
Value of one type of instablecoin supplied
V_instable
Value of assets supplied in ISP
Vmaze=(Nrmaze+Nfmaze)CmazeVstable(i)=(Nrstable(i)+Nfstable(i))Cstable(i)Vstable=i=1nVstable(i)Vusp=Vmaze+VstableVinstable(i)=(Nrstable(i)+Nfstable(i))Cinstable(i)Visp=i=1nVinstable(i)V_{maze}=(N_{rmaze}+N_{fmaze})*C_{maze} \\ V_{stable(i)}=(N_{rstable(i)}+N_{fstable(i)})*C_{stable(i)} \\ V_{stable}=\sum_{i=1}^{n} V_{stable(i)} \\ V_{usp}=V_{maze}+V_{stable} \\ V_{instable(i)}=(N_{rstable(i)}+N_{fstable(i)})*C_{instable(i)} \\ V_{isp}=\sum_{i=1}^{n} V_{instable(i)}

Phase 2 Global Yield

Phase 2.1 Global Yield

Variable
Definition
Y_global
The actual amount of MAZE generated per cycle
Yglobal=YbaselineKglobalY_{global}=Y_{baseline}*K_{global}

Phase 2.2 Global Yield Distribution

Yusp=YglobalRuspYisp=YglobalRispYlpp=YglobalRlppY_{usp}=Y_{global}*R_{usp} \\ Y_{isp}=Y_{global}*R_{isp} \\ Y_{lpp}=Y_{global}*R_{lpp}

Phase 3 USP Internal Distribution

Phase 3.1 SVRB Stablecoins-MAZE

Variable
Definition
P_maze
Proportion of MAZE value supplied in USP
R_svrb
SVRB ratio
D_maze
USP reward distributed to MAZE supply
D_stable
USP reward distributed to stablecoin supply
Pmaze=Vmaze/VuspRsvrb=0.8Pmaze(0,π/12)Rsvrb=0.3sin6x+0.5Pmaze[π/12,π/4]Rsvrb=0.2Pmaze(π/4,1)Dmaze=YuspRsvrbDstable=Yusp(1Rsvrb)P_{maze}=V_{maze}/V_{usp} \\ R_{svrb}=0.8\qquad P_{maze}\in(0, \pi/12) \\ R_{svrb}=0.3\sin6x+0.5\qquad P_{maze}\in[\pi/12, \pi/4] \\ R_{svrb}=0.2\qquad P_{maze}\in(\pi/4,1) \\ D_{maze}=Y_{usp}*R_{svrb} \\ D_{stable}=Y_{usp}*(1-R_{svrb})

Phase 3.1.1 FORB MAZE Internal Distribution

Variable
Definition
P_mazeoccupy
Proportion of MAZE lent
R_forbmaze
MAZE FORB ratio
D_mazefunding
Reward distribution to MAZE funding supply
D_mazereserve
Reward distribution to MAZE reserve supply
Pmazeoccupy=Nmazeoccupy/NfmazeRforbmaze=0.5Pmazeoccupy[0,0.2]Rforbmaze=0.5Pmazeoccupy+0.4Pmazeoccupy(0.2,0.8)Rforbmaze=0.8Pmazeoccupy[0.8,1]Dmazefunding=DmazeRforbmazeDmazereserve=Dmaze(1Rforbmaze)P_{mazeoccupy}=N_{mazeoccupy}/N_{fmaze} \\ R_{forbmaze}=0.5\qquad P_{mazeoccupy}\in[0, 0.2] \\ R_{forbmaze}=0.5*P_{mazeoccupy}+0.4\qquad P_{mazeoccupy}\in(0.2, 0.8) \\ R_{forbmaze}=0.8\qquad P_{mazeoccupy}\in[0.8, 1] \\ D_{mazefunding}=D_{maze}*R_{forbmaze} \\ D_{mazereserve}=D_{maze}*(1-R_{forbmaze})

Phase 3.2 SVWD Stablecoins

Variable
Definition
P_stablevalue(i)
Value proportion of one type of stablecoin supply
D_stable(i)
Reward distribution to one type of stablecoin supply
Pstablevalue(i)=Vstable(i)/VstableDstable(i)=DstablePstablevalue(i)P_{stablevalue(i)}=V_{stable(i)}/V_{stable} \\ D_{stable(i)}=D_{stable}*P_{stablevalue(i)}

Phase 3.2.1 FORB Stablecoin Internal Distribution

Variable
Definition
P_stableoccupy(i)
Proportion of the stablecoin lent
R_forbstable(i)
The stablecoin FORB ratio
D_stablefunding(i)
Reward distribution to the stablecoin funding supply
D_stablereserve(i)
Reward distribution to the stablecoin reserve supply
Pstableoccupy(i)=Nstableoccupy(i)/Nfstable(i)Rforbstable(i)=0.5Pstableoccupy(i)[0,0.2]Rforbstable(i)=0.5Pstableoccupy(i)+0.4Pstableoccupy(i)(0.2,0.8)Rforbstable(i)=0.8Pstableoccupy(i)[0.8,1]Dstablefunding(i)=Dstable(i)Rforbstable(i)Dstablereserve(i)=Dstable(i)(1Rforbstable(i))P_{stableoccupy(i)}=N_{stableoccupy(i)}/N_{fstable(i)} \\ R_{forbstable(i)}=0.5\qquad P_{stableoccupy(i)}\in[0, 0.2] \\ R_{forbstable(i)}=0.5*P_{stableoccupy(i)}+0.4\qquad P_{stableoccupy(i)}\in(0.2, 0.8) \\ R_{forbstable(i)}=0.8\qquad P_{stableoccupy(i)}\in[0.8, 1] \\ D_{stablefunding(i)}=D_{stable(i)}*R_{forbstable(i)} \\ D_{stablereserve(i)}=D_{stable(i)}*(1-R_{forbstable(i)})

Phase 4 ISP Internal Distribution

Phase 4.1 SVWD Instablecoins

Variable
Definition
P_instablevalue(i)
Value proportion of one type of instablecoin supply
D_instable(i)
Reward distribution to one type of instablecoin supply
Pinstablevalue(i)=Vinstable(i)/VispDinstable(i)=YispPinstablevalue(i)P_{instablevalue(i)}=V_{instable(i)}/V_{isp} \\ D_{instable(i)}=Y_{isp}*P_{instablevalue(i)}

Phase 4.2 FORB Intablecoin Internal Distribution

Variable
Definition
P_instableoccupy(i)
Proportion of the instablecoin lent
R_forbinstable(i)
The instablecoin FORB ratio
D_instablefunding(i)
Reward distribution to the instablecoin funding supply
D_instablereserve(i)
Reward distribution to the instablecoin reserve supply
Pinstableoccupy(i)=Ninstableoccupy(i)/Nfinstable(i)Rforbinstable(i)=0.5Pinstableoccupy(i)[0,0.2]Rforbinstable(i)=0.5Pinstableoccupy(i)+0.4Pinstableoccupy(i)(0.2,0.8)Rforbinstable(i)=0.8Pinstableoccupy(i)[0.8,1]Dinstablefunding(i)=Dinstable(i)Rforbinstable(i)Dinstablereserve(i)=Dinstable(i)(1Rforbinstable(i))P_{instableoccupy(i)}=N_{instableoccupy(i)}/N_{finstable(i)} \\ R_{forbinstable(i)}=0.5\qquad P_{instableoccupy(i)}\in[0, 0.2] \\ R_{forbinstable(i)}=0.5*P_{instableoccupy(i)}+0.4\qquad P_{instableoccupy(i)}\in(0.2, 0.8) \\ R_{forbinstable(i)}=0.8\qquad P_{instableoccupy(i)}\in[0.8, 1] \\ D_{instablefunding(i)}=D_{instable(i)}*R_{forbinstable(i)} \\ D_{instablereserve(i)}=D_{instable(i)}*(1-R_{forbinstable(i)})

FORB Exception

Considering a token's Funding Pool and Reserve Pool, if one of them is empty, FORB will not work anymore since the yield distribution will be fully taken by the other one with supply inside.
Last modified 7mo ago